
Determination of principal characteristics 
of turbulent swirling flow along annuli 

Part 3: Numerical analysis 
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Turbulent swirling f low along the axisymmetric annulus formed between two co- 
axial tubes of different diameter but the same length is considered. All boundary 
layers are considered to be removed at entry to the test section for consistency with 
the authors' experimental data. A description is given of the f low development 
along the test section to a region where fully developed f low may be assumed, and 
both large and small swirl components are examined. The analysis commences 
from a general statement of the Navier-Stokes equations in cylindrical coordinates 
written in a form to account for turbulent velocity components. A technique for the 
solution of the resulting elliptic equations and associated boundary conditions is 
presented, and the results compared with experimental and other analytic data. It is 
necessary to adopt a model to describe the spatial dependence of the turbulence 
parameters, and investigations using both the concept of a mixing length and a k-~ 
model are described. Good agreement between theory and experiment in respect 
of velocity profiles is obtained, and the successive improvement in predictions 
with increased sophistication of turbulence models is demonstrated. 

Keywords: turbu/ence, swir/ing flow, e//iptic Navier-Stokes equations, 
finite difference techniques, numerica/ ana/ysis, co-axia/ tubes 

Introduction 
In previous papers ~'2 the authors have presented 
experimental data for both time-mean and turbulence 
parameters, describing the development along an 
axisymmetric annulus of an initially inviscid swirl flow at 
entry. This type of flow has important applications in, for 
example, the design of heat exchangers, combustion 
chambers and turbomachinery. In this paper a 
description is given of swirling flows between two 
concentric, stationary tubes with a common entry plane. 
Some work has been performed on a similar geometry, 
but with rotation of the inner tube about the common 
generator axis 3. 

Although this paper is primarily concerned with 
turbulent swirling flow in an annulus, some special cases 
are also examined in order to test the general analytical 
procedures. In particular, laminar flow and pipe 
geometry are included. A full discussion of the techniques 
adopted by various authors dealing with relevant flow 
problems has been given by Morsi 4, and so here we select 
a few of special interest. Scott 5, for example, has dealt 
with the characteristics of the decay of swirling turbulent 
flow in pipes and annuli. He assumed the flow to be fully 
developed, ie the axial flow velocity profile was of 
constant shape, and was then able to reduce the simplified 
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partial differential equation into one of ordinary 
derivatives. Kreith and Sonju 6 have dealt with fully 
developed turbulent pipe swirl flow. 

Many formidable fluid dynamics problems have 
been tackled successfully in recent years using high speed 
computers to accommodate a variety of numerical 
techniques. Patankar and Spalding 7 have developed a 
method of solving the differential equations for turbulent 
boundary layer flows using a finite difference procedure. 
A computer program, referred to as GENMIX,  has now 
been made available T. There have been various applications 
of the analytical approach which essentially requires the 
solution of the parabolic form of the momentum 
equations (which can only be applied to a flow with no 
region of reverse or secondary flows). The method was 
used by Sharma et al 3 and reasonable agreement with 
experiments was reported. More recently, Yamamoto 
and Millar 8 have used the parabolized Navier-Stokes 
equations with the Crank-Nicholson finite difference 
scheme and a k -e  turbulence model to predict turbulent 
swirling flow entering a stationary annulus. They 
compared their predictions with the experimental data of 
Scott and Rask 9. However, in this case, poor agreement 
with measurements was found and further study was 
recommended. 

There is little doubt that turbulent swirling flows 
can best be described by the elliptic form of Navier-  
Stokes equations (particularly flow of high swirl and 
recirculation). A finite difference procedure to solve the 
steady form of these elliptic equations has been published 
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by Gosman et al 1°. For this technique an up-wind 
difference scheme is used to approximate the convection 
terms. It is then possible to ensure that the matrices 
containing the coefficients of sets of finite difference 
equations are unconditionally diagonally dominant, thus 
promoting numerical stability and speedy convergence of 
the solution, particularly for flow at high Reynolds 
numbers. Several investigators have used this approach 
for various swirl flow problems, eg Kubo and Gouldin 11. 
for a combustion swirl chamber, Crane and Burley 12 for 
laminar swirl in a diffuser, and Huang and Tsou 13 for 
turbulent free-swirling pipe flows and heat transfer. 

In what follows, we apply the numerical technique 
of Gosman et aP o to turbulent swirling flow in a constant 
section annulus and introduce the necessary modifi- 
cations to satisfy the boundary conditions imposed by the 
geometry of the confining tubes. A measure of the success 
of the theoretical predictions is obtained from a 
comparison with experimental data I and other analytical 
data where available. A discussion of the effect of 

characteristics of turbulent sw=rling flow along annuli 

turbulence models (MLH and k-e) on the predicted data 
is also given. 

Equations of motion 

The fluid is considered to be incompressible and the flow 
isothermal and axially symmetric, ie the axis no 
circumferential variation of flow properties at a given 
radius in a given plane perpendicular to the axis of 
symmetry of the annular test section. Furthermore, the 
flow possesses steady mean components upon which are 
impressed turbulence fluctuations. The cylindfic~ 
coordinate system used is shown in Fig 1, where U, V 
and lTd are the axial, radial and tangential velocities 
corresponding to the axial, radial and tangential 
coordinates x, r, 0. Here we assume 0 to be made up of a 
time average component 0 and a turbulence fluctuation 
component u', and similarly for the other velocities, ie 

U=U-t-u '  V=P-Fv'  if '= if '+ w' (1) 
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Subscripts 
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Fluctuating tangential velocity 
X/ro 
Axial distance measured from 
entry to test section 
Distance measured normal to 
wall 
Radius ratio - ri/ro 
Dissipation rate of turbulence 
per unit mass 
Vorticity 
(ro/Uav 
Angular coordinate in 
cylindrical system 
Dynamic viscosity 
Effective viscosity 
Turbulent viscosity 
~e/~ 
#t//~ 
Density 
Prandtl number for turbulent 
kinetic energy 
Prandtl number for dissipation 
rate of turbulent energy 
Shear stress 
Shear stress at wall 
Function used in Eq (31) and 
defined in Table 3 
Function used in Eq (28) and 
defined in Table 2 
Stream function 
~'/R 
Ur 

Inner 
Outer 
Radial direction 
Axial direction 
Tangential direction 
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I 

Fi9 1 Coordinate system 

With p representing the density of the fluid and it its 
dynamic viscosity, the equations of continuity and the 
Navier Stokes equations for a swirling fluid passing 
along the annulus, with the absence of body forces, may 
be written for the time average motion as 

Continuity equation: 

#--(rO)+ ~--r 

Axial momentum equation: 

(2) 

p, c0o +  0o] 0p. ~ ~ = - ~ + . v  
f0u '2 1 0 ~ , , )  

--P~-X +r~r(rUv )) 
(3) 

Radial momentum equation: 

0? ~2}= @ 2_ P 

(4) 

Tangential momentum equation: 

where 

(3 2 O z 1 O 

(5) 

and p represents the local pressure in the flow. 
The time averages of the fluctuating velocity 

products may be identified as turbulence stress 
components which may be combined with the 
appropriate time average components. As a result, we 
may adopt the concept of an effective viscosity #~ given by 

/t~ =/~+#, (6) 

where/4 accounts for the turbulence stresses and is called 
turbulent viscosity. Under these circumstances Eqs (2) to 
(5) may be rewritten in the following form: 

o0 ov v 
0x ~-~-r + = 0  (7) 

p{ 0~--x U--- + P°0"l ~ j  

@ 1 o f  /oF- aO\l  0 t  otT\ (8) 

+r~r r  r / ~ e ~ r r - 2 # e r ~  

pftJ; OVV I_OW VW) 
~-x + v w + ~ - j  " 

(9) 

r 2 Or I, or k r / j  cx \ cx / 

The four Eqs (7) to (10) can therefore be used 
to solve for the four field variables U, V, Wand p provided 
that some model for the spatial dependence of #¢ can be 
used. Although the matter is straightforward for laminar 
flow, for then #e=#,  which is a physical property of the 
fluid, the formulation of an accurate and plausible 
turbulence model to determine Pe is difficult if some 
degree of general applicability is preserved. 

Mathematical modelling of turbulence 

Various proposals, referred to as 'turbulence models', for 
representing the turbulence stress tensor have been 
summarized by Rodi 14. These are essentially models for 
/~e, and some require the use of other differential transport 
equations whereas others involve algebraic relations. In 
this study, two models have been used, namely: 

(a) the Prandtl mixing length hypothesis: 
(b) the k-e model, in which two differential equations are 

used to describe the turbulence kinetic energy per 
unit mass, k and the dissipation rate of turbulence 
energy per unit mass, e. 

In case (a) the turbulence viscosity is related to the 
appropriate mean strain rate by the so-called mixing 
length l, which is itself proportional to a characteristic 
length for the flow. Thus, taking the x-direction as an 
example, 

~,x=pZx ~ ~ (ll) 

and so 

t2 001 #o,x=~+p x ~ /  (12) 

Similarly, for the tangential direction, we have 

#~,o=#+pl2r f ~ ( ~ )  (13) 

Hence, from Eqs (12) and (13), and by analogy with 
Stokes's law for laminar flows, the total axial and shear 
stresses may be introduced, respectively, as 

OU 
Z,,x=#~,x Or (14) 
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Z,,o=l&.or~r(~- ) (15) 

It may be noted here that special consideration must be 
given to these expressions close to a solid wall, as is 
described below. 

For complicated three-dimensional flows, 
especially swirling and separated flows, the governing 
equations of motion are elliptic, and hence convective 
transport of momentum may be significant. It is then 
more difficult to prescribe I algebraically, and thus mixing 
length models may lose accuracy. Although the two- 
equation k-e model is by no means complete for flows 
described by elliptic equations, such a model does have 
the advantage that l can be calculated. Jones and 
Launder 15 were the forst to put forward a relatively 
simple k-e model which was a special case, applicable to 
high Reynolds numbers, of the exact equation derived by 
Harlow and Nakayama 16. Thus, for case (b) we adopt the 
Jones and Launder expression 

l, lt = C~pk2/e (16) 

where C, is a constant. The corresponding (coupled) 
equations for k and e are then, respectively, 

p t O ~ + r O k )  O(ptOk] 1 0 ( p  t Ok] 

(17) 

,, u r o 7 6 7  r o7( 
g g2 

+C, ~I4G-pC2 g (18) 

where G is referred to as the generation term and is given 
by 

+(cqW'~Z +~OlYv'\~-xf [ &-r I~} B (19, 

and ak, t is the Prandtl number for turbulent kinetic 
energy, a~,t the Prandtl number for dissipation rate of 
turbulent energy, and C 1 and C z are constants. 

An examination of previous work and a series of 
computer analyses by the present authors has led to the 
adoption of numerical values of the constants Cu, ak,t, a~,, 
C1, C z as shown in Table 1. 

T r a n s f o r m a t i o n  o f  t h e  e q u a t i o n s  o f  
m o t i o n  

The governing equations of motion (7) to (10) are seen to 
be elliptic and so require boundary conditions for each 

equation on all boundaries. A finite difference technique is 
used which is an adaptation of the approach developed b2/ 
Gosman et al 1°. In this, the primitive variables U and V 
are replaced in non-swirling flow by vorticity ( and 
stream function qJ, and p may be eliminated by cross- 
differentiation. When swirl is present we retain ( and ~k of 
the previous axial flow and introduce the additional term 
m - rW, which represents the angular momentum per unit 
mass about the x axis in Fig 1. Thus the vorticity in the x-  
r plane may be expressed as 

( (20) 
Ox Or 

and the stream function satisfies the relations 

¢= frO dr=- frPdx (21) 

whence 

U = I O ¢  ~,= 10¢ (22) 
r Or r Ox 

and it is seen that ¢ satisfies the continuity equation (7), as 
it should by definition. The vorticity may also be written 
in terms of stream function as follows 

1 02~, 1 02¢ 0_7 (23) 
= r Or 2 r 8x 2 r 

Now, if Eq (8) is differentiated with respect to r, and Eq (9) 
differentiated with respect to x, the term - 02p/OxOr may 
be eliminated from the resulting equations. The vorticity 
and stream function can then be introduced into the 
resulting equation to give the so called 'vorticity' 
equation, 

Orr / - -Or t r~x ) ; - -~x]  r ~xxt l4r / ;  

a -2 
Or ( Or 

The function F u is given by 

F'=2r [~x2t#'~-r)-~rz(#'Ox} OxOr 

x l.o(  ( \ o r  ~ / j  r ~ \  T;r/ 
1 0 f OV~ V ~#~7 
r Or t / & ~ x / - r S ~ x x j  (25) 

It has been argued by Gosman et al ~°, Crane and 
Burleyl 1, Okhio 17 and others that F .  is negligibly small, 
and evidence from jet flows certainly supports this 
assumption. However, no such evidence is available from 

T a b l e  1 E m p i r i c a l  c o n s t a n t s  used in k--e model 

S o u r c e  C~ a,, t a~, t C 1 C 2 

Kubo and Gouldin ~1 0.09 1.0 1.3 1.40 1.95 
Jones and Launder TM 0.09 1.0 1.3 1.55 2.00 
Hanjalic and Launder 23 0.07 1.0 1.1 1.45 2.00 
Present 0.08 1.0 1.3 1.50 1.98 
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Table 2 Dimensional functions in Eq (28) 

a, b, c, G 

1 
(D _~_~/r t0/-2 /-2 ~e Jr- F# ~" 

r [ r Ox iJ 

0 1/ r  2 1 - 
m = r ld/ p 1" 2 / O. e 1 #2 0 
k p ~t/(~k, t 1 p c -  #t G 

e p tI~/G, , 1 - Cl lttG- PC2c 

annulus flows, and thus this function is retained in the 
numerical analysis. 

The 'stream function' equation may be formed 
from Eqs (20) and (22): 

~ ( ! ~ )  + ~ ( 1  O~-O~ + ( = 0  (26, 
Or \ r or / 

The third equation necessary for a complete solution maj~ 
be obtained from Eq (10), on substitution for U and V 
from Eq (22), to give the 'swirl' equation 

3 O I,~ ~ 3 O if' 

0x 

The variable o) = (/r is now introduced and may be 
used with m, already defined, and ¢ to provide a general 
equation for the purposes of computer solution. 
Reference to Eqs (24), (26) and (27) and also to  the k~  Eqs 
(17) and (18) shows that all may be represented by the 
following general equation applicable to axisymmetric 
swirling flows: 

{ or x 'CO ' } 
- ~ { b 4 , r ~ ( c o c ~ ) } + r d 4 , = O  (28) 

The functions %, b,, % and d, in Eq (28), related to each 
independent variable ~b, are given in Table 2. We see, 
therefore, that the same technique for the solution of Eq 
(28) for one q~ can be used throughout. It may also be 
noted that the coefficients in Table 2 apply for both 
laminar and turbulent flows. In the case of laminar flow, it 
is more convenient to derive dimensionless forms of Eqs 
(24), (26) and (27). The following substitutions are 
therefore used: 

R = r/ro X = X/ro 

W= fC/U.v C=Cro/U.~ 
~'~=~/~, ~=~/~, 

t F .  = roFu/laU~ 

u = r3/G~ v= P/Gv 

n = CIR q' = ¢ l U . ~ o  

Re=pU.~ro/#  M = R W  (29) 

The average velocity Uav is defined as the volume flow rate 
of fluid passing through the annulus divided by the 
annulus cross-sectional area perpendicular to the flow 
direction. We can therefore write 

r o 
Ua v _ Q _ f r `  2/~£U dr 

A rt(ro2 _ r2 ) (30) 

The transformed equations of motion may still be 
arranged in the form of Eq (28), but in dimensionless 
terms, ie 

B . R ~ ( C , ¢ )  +RD.=0 (31) 

The functions A., B®, C®, D® for appropriate 
interpretations of q) are shown in Table 3. Using the data 
of Tables 2 and 3 Eqs (28) and (31) can be converted to a 
finite difference form. 

The technique employed is an adaptation of the 
relaxation method developed by Gosman et al 1°. A 
detailed description of the problem in hand can be found 
elsewhere 4. 

Boundary condit ions 

In order to obtain a solution of the general elliptic partial 
differential Eq (28) or the dimensionless form, Eq (31), 
boundary conditions must be specified at all points on the 
boundaries enclosing the field of flow. These boundaries 
are at inner and outer walls and at the entrance to an exit 
from the annular test section. Clearly, for the analytical 
predictions to resemble accurately the measured flow 
field, the boundary conditions must reflect experimental 
conditions as closely as possible. A problem is therefore 
immediately posed by the exit condition, for we suppose 
the test section to be sufficiently long for the swirl velocity 
to decay asymptotically to zero. Although this exit 
condition will applied in a numerical solution, consistent 
with a specified accuracy in the prediction of velocity 
components, the extent of an experimental test section is 
unlikely to satisfy the same requirements. We can, 
nevertheless, examine the experimental development of 
flow for a given test section and make comparisons with 
corresponding data from numerical predictions within 
the same test section length. Finally, it may be noted that 
a theoretical prediction of the flow field obtained 
independently of all empiricism cannot yet be obtained. 
Consequently, some boundary conditions are formulated 
with the aid of experimental data ~'2, although such 
dependence is intentionally kept to a minimum. 

The boundary conditions adopted are briefly 
summarized below. 

Table 3 Dimensionless functions in Eq (31) 

A® B e C® D e 

R2Re R 2 p~ 

0 1 /R 2 1 
M Re R2#~ 1/R 2 

R [ R  8X 

0 
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Condit ions at inlet 

Vorticity 

The vorticity distribution at inlet may be estimated from 
Eq (20), in which the component velocity gradients are 
assumed to be known experimentally or specified 
mathematically. In particular, for the data of Ref 1, 
against which the present predictions are to be tested, the 
axial velocity is uniform at entry and no radial velocity 
exists there. Hence we may write 

~(r, o) = 0 = f~(R, o) (32) 

Stream function 

The first of Eqs (21) may be used to determine the radial 
variation of stream function, that is 

f: rU dr=21 ~( r2_  ri2 ) (33a) O(r,o)= 
i 

for uniform axial velocity at entry. Similarly, in 
dimensionless form, 

1 W(R, o) = ~ U ( R  2 - -  c~ 2) (33b) 

where the annulus radius ratio ~ = r~/r o. It may also be 
noted that for uniform axial velocity at entry, Eq (30) 
shows that 

U a v  = U(R, o) 

whence Eq (33b) reduces to 

W(R, o) = 1  (R 2 _ C~ 2 ) (34) 
Z 

Angular momentum 

Since the flow at inlet is considered specified, then m(r, o) 
and hence M(R,o) are presumed known. In the 
experimental work described in Ref 1 the boundary layers 
which developed on the walls of the conditioning section 
were removed by suction. Thus flow at inlet to the test 
section could be considered inviscid since tangential 
velocity gradients were absent. One may thus 
contemplate a variety of angular momentum 
distributions depending on the technique used for 
introducing swirl to the flow. In the authors' experiments 
a free vortex, ie constant angular momentum, was chosen 
as the inlet conditions although some workers have 
examined forced vortex conditions. Only with suction 
facilities can close simulation of the inviscid conditions be 
obtained, however, and the closeness to free vortex flow 
can be seen in Ref 1. For the sake of ease in calculations, a 
least-squares fit can be used to obtain the 'nominal' free 
vortex relation from the measured data. In general, of 
course, the momentum equations can be satisfied point- 
by-point across the inlet plane. 

Mixing length hypothesis 

A detailed examination of the experimental data obtained 
from swirling flows in annuli 1'2 revealed that ~,x had a 
value of 2.0 to good accuracy. The value of/A,0 was 
estimated from the same source of data using the 

expression 

(35) 

Mode/for k and 8 

Experimental data from Ref I were used with Eqs (17), 
(18), (19) and the constants shown in Table 1 to calculate 
values of k and e at the inlet plane. Should such data not 
be available then the Gosman and Pun 18 formula may be 
used: 

k = 0.035 [] 2 (36) 

The energy dissipation rate is not usually known and so it 
is calculated from the viscosity relation, Eq (16). If 
available, Pt can be deduced from turbulences stress data, 
as herein, or from mixing length theory. 

Cond i t i ons  near the wa l l s  

Vortic#y 

There is some difficulty in obtaining the vorticity 
conditions close to walls, and care must be exercised in 
handling them. Indeed, mathematical divergence and 
instability may occur if the wrong boundary conditions 
are used. In this study two different techniques of 
approximating the vorticity at solid walls are employed. 

The first method makes use of the vorticity Eq (24) 
to obtain ~o = ~/r, but the following assumptions have to 
be made: 

(a) the longitudinal gradient of o9 is negligible compared 
with the radial gradient of co; 

(b) the walls are impermeable and no slip takes place 
t here; 

(c) M--*O, ~/~x--*O and/A is constant. 

Eq (24) then reduces to 

do9 
#e ~rr (r3 ~-r) = 0  

which may be integrated twice with respect to r between r~ 
and r to give 

1 1 
CO - -  f.Oi ~ ~ -- 

where 

&o 
C3 =r3 & 

is a constant. Substitution for o) into Eq (26) applied close 
to a wall and then integrating twice with respect to r gives 
the following expression for regions of the flow field very 
close to the inner wall: 

(;i) 
(37) 

and in this region In(r/ri) tends to zero so that 

(r 2 _ r E)2 C3 
~ - ~ k = = - - c % ~  16r2( r4- r  4) (38) 
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Fig 2 Grid points for flow near to walls 

The vorticity at the inner wall is (rtn)i = ~i and 

0 (  0(r(.o) 0(D C 3 
- -  = r ~ - r  + f.o = ~ -  + t.o i 

Or Or 

and so at the inner wall 

q[16(0 - ¢~) + ( r 4 -  r4){O(rt°)/Or}i] (39a) 
ri(Oi = (4r2ri 2 -- 3r~ - -  r 4)  

or, in dimensionless form, 

a[16(q' - ~ )  + (R 4 - a4){ O(R92)/OR}i] 
a ~  i ____. ( 4R20~2 __ 3C( ~ -  R 4  ) (39b) 

Thus, it can be seen that the vorticity at the inner wall can 
be expressed in terms of the stream function and vorticity 
at points close to the wall since the derivative can be 
evaluated in terms of a Taylor expansion. Similar 
development allows the determination of the vorticity at 
the outlet wall following integration over the range r---~ re. 

In the second method the stream function Eq (26) 
is approximated for conditions close to a wall, ie with 
O¢/Ox= 0 and r constant, to give 

1 021] / 
= re) = r 0r 2 

to give vorticity in terms of stream function close to solid 
walls. The second derivative of ~ can be deduced from a 
Taylor expansion to second order using the definitions in 
Fig 2 to estimate ~o. 

For the inner wall at point P~ 

COpi = -- = ) r 3 r 2 _ ~ |  (40a) 
rPi 1- J2 Jl FJ1 32 ) 

that is 

2 ~RLR'j,--Ra, V j ,~  (40b) 
R j,  R h J 

For  the outer wall at point Po 

_ 2~r3 .  2(¢J.- ,-  fflPo)~r3.-,(ffJJ.-~ 7 IPP°).} (41a) 
(DPo "= ..2 I r 3 r 2 r 3 r 2 rPo {. J. 2 J . - i -  J.-z J.-2 

that is 

a , o =  - 2 RL, (v3.-, - % ) -  R o, m._,- 
( Rj.  2RJn 1--RJn ,R3. ~ J 

(41b) 

Stream function 

As a result of impermeability and no slip at the walls there 
can be no velocity component  there. Thus ~ must be 
constant on the walls. Without loss of generality we may 
take IP(ri ,  X) = 0 = t IJ (~ ,  X )  and 

~r r° O(ro, x) = rU dr 
i 

that is 

fa t W(1, X) = RU dR 

(42a) 

(42b) 

Angular m o m e n t u m  

Since the inner and outer walls are both stationary and as 
there is no slip on the walls, 

m(ri, x) = 0 = m(ro, x) (43a) 

that is 

M(ct, X) = 0 = M(1, X) (43b) 

Mixing length hypothesis  

Close to a wall the dynamic viscosity # plays an important 
role and so using the Van Driest proposaP 9 with the 
modified version of shear stress developed by Patankar  
and Spalding 7 the following relationsships for mixing 
length were used: 

[ {Y(PZx°rO)I/2~] ( 4 4 )  
1" ore = Ky  1 - exp A-#- J ]  

where the prime denotes values taken at the walls, and y is 
the distance from the wall. The numerical values of the 
constants that were used are K = 0.4 and A' = 26.0. In the 
present work it was found to be sufficiently accurate to 
take l" = l~ and so/re could be estimated near to the inner 
and outer walls. 

Model  for k and  e 

Use is made of the well-known 'wall functions', which are 
algebraic relations based on the logarithmic law of the 
wall, to estimate k and e at the walls. The expressions 
adopted in the analysis are as follows: 

z,/p (45) 
k p -  (C,CD) 1/2 

(~,lp) 3/2 
ep= KcYp (46) 
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where z, represents the resultant shear stress a short 
distance yp from the wall point P. The constants Cu, CD 
and K c are taken to be 0.09, 0.075 and 0.418 respectively. 
Values of kp and ee so deduced are considered to apply at 
the walls, and further details are given by Morsi 4. 

Conditions at outlet  

It was found from computational experiments with 
simpler analyses on similar geometries that good 
agreement with experimentally measured data could be 
obtained with the following conditions applied at large 
distances from inlet: 

O~ = 0 = 00. (47) 
#x 0X 

and 

0 2 4  02(I ) 

~X 2 - -  0 = 0 X  ~ (48) 

where ~b and • take on the parameters shown in Tables 2 
and 3. 

Notes on computat ional  procedure 

The main details and a computer listing of all programs 
and subroutines are given in Ref4. Here we are content to 
point out a number of important features which it is 
necessary to cover ifa satisfactory set of calculations is to 
be produced. 

A particularly important factor concerns the grid 
geometry to be employed in a finite difference solution of 
the elliptic equations (28) and (31) and their associated 
boundary conditions. In this study a non-uniform grid 
was used. This allows the adoption of fine mesh spacings 
in areas where spatial gradients are large, eg near the 
walls where boundary layer behaviour is important, and 
coarser spacings in other parts of the flow field, especially 
with increasing distance downstream from the inlet of the 
annular test section. It is then possible to make more 
efficient use of computer time and core store than if a 
uniform mesh size were used to give equivalent accuracy 
in regions of rapidly changing flow parameters. 
Unfortunately, the complexity of the resulting finite 
difference equations is greatly increased and care must 
also be taken in the construction of the mesh. The ratio of 
successive mesh spacings should not be made too different 
from unity and in the present work this ratio varied from 
1.05 in regions close to the walls and annulus inlet to 1.25 
towards the centre of the flow passage. Further discussion 
of these points may be found in Ref 10. 

The non-linear nature of the equations of motion, 
combined with a strong coupling between them, may give 
rise to numerical instabilities leading to divergence of the 
solution during computations. In order to minimize the 
occurrence of unstable behaviour, the initial conditions 
for the first set of iterations were chosen such that the 
mean velocity satisfied continuity, and k and e were based 
on estimates from values of shear stress and mixing 
length. To solve the equivalent finite difference equations, 
and obtain a converged solution, an iteration procedure 
using an under-relaxation technique was adopted, so 
that, for example, 

c~"=~ "-1 + f ( (a"-d)  "- ~) (49) 

where the superscripts n and n -  1 denote the number of 
iterations, ie q~" is the solution of the nth iteration, and f is 
the under-relaxation factor, which had a value between 
0.1 and 1.0. 

Evidently, the rate of convergence of the 
procedure depends strongly on f, and for linear equations 
an optimum value of f which provides convergence rates 
that are an order of magnitude faster than the Gauss-  
Seidel scheme ( f =  1.0) is known to exist. Furthermore, 
simple linear equations are amenable to exact analytical 
treatment to derive the optimum relaxation parameters. 
No such results are available to determine the optimum 
relaxation parameter for the type of equation considered 
in this study. Thus one is forced to adopt a scanning 
procedure in which f is varied over a range, and the value 
selected which gives rise to the fewest number of 
iterations. The scanning was accomplished by first 
assuming f¢, for vorticity, was constant and then varying 
f , ,  for stream function, to give best results; that is, with 
minimum number of iterations. The reverse procedure 
was then applied by keeping the 'best' f ,  constant and 
determining f;. With these values of f,  one can estimate 
fM, for 'angular momentum'. Typical values of under- 
relaxation factors obtained were f , = 0 8 4 ) 9 ,  f ;=0 .42 -  
0.45, fM = 0.62--0.7, fk = 0.4--0.45, f~ = 0.42 0.45. 

TO test the convergency of the solution of a 
particular variable • the convergency criterion used was 

{(O n - • n- 1)/On}max ~ CC (50) 

where CC had a typical value between 0.001 and 0.005. 

Results 

It is evident from the foregoing theoretical models that the 
success of predicting swirling flow behaviour in an 
internal system relies on the consistent combination of 
accurate equations of motion and boundary conditions, a 
plausible (and if possible general) turbulence model, and 
an accurate, stable numerical analysis. To test the 
efficiency of the present techniques in all these respects we 
concentrate primarily on the determination of various 
velocity profiles in relation to corresponding 
measurements. The equations governing the turbulent 
swirling flow under consideration are sufficiently general 
to include certain distinct problems as special cases. For  
example, swirling laminar flows are immediately treated 
by setting /~e equal to (constant) #, and pipe flow is 
obtained when r~=0=~ and the inner boundary 
conditions are modified to account for the absence of a 
centre body and the no-slip condition there so that ~b = 0 
and O(/~r = 0 on the pipe axis. Following the formulation 
of the complete computer program it seemed prudent to 
check its accuracy in solving some simpler problems for 
which other theoretical and/or experimental data were 
available for comparison. This was done for the following 
cases: 

(a) laminar pipe flow; 
(b) turbulent pipe flow, using both the previously 

discussed turbulence models; 
(c) laminar annulus flow. 

The present computer predictions for case (a) in which 
W = 0  are shown in Fig 3 for the distribution of axial 
velocity U = [J/Uav. The experimental data are those of 
Nikuradse given, for example, by Goldstein 2°. Fig 3 
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Fig 4 Radial distributions of mixing length in a circular- 
section pipe 

illustrates the initial and fully developed velocity profile 
along with an intermediate stage. The fully developed 
condition is reached at X/Re= 0.071, in agreement with 
Nikuradse's  measurements and simplified theory. 

Two turbulence models were examined for 
accuracy in case (b) where non-swirling pipe flows were 
considered for the sake of simplicity. In order to utilize the 
M L H  model the distribution of mixing length I across the 
pipe was required, and so the data illustrated by curves A 
and B in Fig 4 were adopted. Curve A is applicable in the 
wall region and represents the Patankar-Spalding 7 
modification of the Van Driest formula given by Eq (44), 
with K = 0.4, A = 26.0: 

1= 0.4y[ 1 - exp{ - y(pz) 1/2/2@}] (51) 

The value of the local shear stress was calculated from the 
logarithmic law of the wall. Curve B represents 
Nikuradse's  formula, based on experimental data, which 
takes the form 

1/ro = 0 . 1 4 -  0.08R 2 - 0.06R 4 (52) 

Comparison is again made with Nikuradse's  
measurements (see Schlichting 2~) for turbulent flow in 
smooth pipes, and Fig 5 shows the fully developed axial 
velocity profiles for two Reynolds numbers. Excellent 
predictions from theory are again achieved. The flow 
becomes fully developed at X = 70 for Re = 1.1 x 105 and 
X = 40 for Re = 2 x 106. 

The second turbulence model used was the k-e 

formulation put forward by Jones and Launder 15 as 
discussed above. Eqs (17) and (18) were cast into finite 
difference form and the computer  program modified 
accordingly. The value of #e was calculated from the sum 
of # and N given by Eq 06). The values of k and e at the 
walls were derived on the basis of a Couette flow analysis 
using a wall flux relationship ('wall functions') as 
discussed earlier. 

A converged solution, with CC<0.001,  was 
obtained, from which it was observed that fully developed 
flow occurred at a distance X =  53 for Re= 106. This is 
again in agreement with Nikuradse's  measurements of 
X -- 50 to 80 for a wide range of Reynolds numbers related 
to turbulent inlet flow to a circular section pipe. 

Following these pipe investigations it was 
necessary to examine the calculation procedure for the 
annulus flows of the present geometry. Before a full 
consideration of turbulent flows was undertaken, the 
uncertainties associated with turbulence modesl were 
removed by adopting a constant molecular viscosity ~t, 
and so an annular, laminar swirling flow was analysed. 
The initial swirl at inlet was considered to be free vortex 
with a variation given by 

IYV/Uav= W=ro/r= R - ~ 

with a uniform axial velocity (U/Ua, = U = 1.0) at inlet. 
This case was examined by Scott and Rask 9 but they used 
a radius ratio ~=0 .4  whereas we use ~=0.51 here. 
However, before calculations were carried out the effects 
of two important factors, wall vor t ic i ty  and effective 
viscosity function F, ,  were investigated. 

The influence of wall vorticity boundary 
conditions on the rate of convergence and the accuracy of 
the results was considered necessary in view of the 
subsequent extensive computations. A comparative study 

0.75 m 

o Re = 1.1 x 10 5 
0.50 - 

0.25 - 

E] Re=2x 10 6 
Calculated 

I I I 
0 0.25 0.50 0.75 1.0 

R 

Fig 5 Fully developed axial velocity profiles for turbulent 
flow in a circular-section pipe; U c is centreline velocity 
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was made of the two different formulations for the wall 
vorticity, leading to Eqs (39a) and (41b). Test computer 
runs, with identical input data, for each of these 
formulations, produced results in very close agreement. 
However, the condition (39a) was found to give a 
somewhat faster rate of convergence for the vorticity 
cycle, and so it was used throughout succeeding 
calculations. 

Initially, all the terms for F ,  in Eq (25) were 
retained in computations. Subsequently, all terms 
associated with the radial velocity V were neglected, since 
experimental evidence has shown this velocity 
component to be small everywhere; even near the inlet it 
is far smaller than the other velocity components. 
Negligible difference in the predictions of velocity 
variations was observed. However, when the term 

was neglected, a somewhat disordered axial velocity 
profile occurred near the walls, an unsurprising feature 
since OU/Or is significant there. Consequently, this term 
was retained throughout subsequent analyses. 

Fig 6 shows the predicted tangential velocity 
profiles for laminar swirling flow in an annulus with free 
vortex swirl distribution and uniform axial velocity at 
inlet. It may be noted that the peak value of W migrates 
from the inner (convex) wall to the mid-annulus location 
with increasing distance along the annulus. Station 1 
refers to inlet and the remaining stations to 21 are at equal 

intervals of X = 1.65. A measure of the rate at which the 
swirl momentum decays can be obtained from the swirl 
intensity S~ defined as the ratio of the total angular 
momentum at a particular station to the total axial 
momentum. Thus, in dimensionless form, 

si=f' UWR2dR/f~ 1U2RdR (53) 

Fig 7 shows the variation of S~ as a proportion of the inlet 
value 5~ i for the velocity profiles of Fig 6. Following an 
initial rapid decay a region of exponential decay to Si = 0 
at X = c~ takes place, although in the region X = 16.5 to 
33.0 the variation is almost linear. Comparison with the 
swirl decay curves given by Clayton and Morsi 1, deduced 
from turbulent flow measurements, indicates a much 
slower rate of decay for laminar flow. This is primarily the 
result of turbulent viscosity,/zt being much greater than 
molecular viscosity #. 

The complete computer program was set to solve 
turbulent swirling flow developing along an annulus and, 
for the calculations presented here, inlet conditions for all 
dependent variables were taken from experimental data 
along with the boundary conditions discussed earlier. In 
the first set of computer runs isotropic turbulence was 
assumed, ie/~o,x = Pc,0. Furthermore, a constant effective 
viscosity was adopted with e deduced from the empirical 
relationship 

e = 0.404Re °" 3 o s (54) 

where the numerical constants were obtained from a 
comparison of experiment and predictions by the present 
authors and others. Although Eq (54) implies the unlikely 
event that e depends only on Re', and is independent of x 
and r, it was found previously by Huang and Tsou 1 a that 
such an assumption for turbulent free-swirling flow in a 
pipe yielded good agreement between theory and their 
experimental results. The present authors were somewhat 
surprised to find that when theoretical predictions were 
compared with experiment a better agreement occurred 
than that reported earlier by Yamamoto and Millar a, 
especially in respect of the tangential velocity. In Ref 8, 
solutions were given for the parabolized Navier~Stokes 
equations, in which the second-order derivatives of the 
viscous terms for the axial direction were omitted from the 
momentum equations, in conjunction with a k-e model. 
The present authors found, however, that the prediction 
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Numerical predictions assume constant effective viscosity 

of axial velocity profiles was less satisfactory. To yield an 
improvement, the treatment of flow near the walls was 
carried out according to Eq (44). In the core region, where 
the flow is fully turbulent, a constant scalar turbulent 
viscosity was still used. 

Figs 8(a) and 8(b) show the comparison between 
predictions and experiment for tangential velocity 
profiles with the swirl generator blades ~ set at 15 ° and 45 ° 
with ~=0.51 and Re= 28 700 in each case. Agreement is 
promising, especially for the higher swirl angle and over 
the first four stations, but discrepancies increase in 
magnitude further downstream. 

The computed axial velocity variations across the 
annulus for several axial stations, corresponding to the 
conditions of Fig 8(a), are shown in Fig 9. Agreement with 
experiment is generally good near the outer wall, but 
significant departures can be seen as the inner wall is 
approached. Contrary to measurements, the theoretical 
profiles show a maximum velocity, for this constant 
viscosity analysis, slightly nearer the outer wall than the 
inner wall. Evidently, predictions of the U profiles could 
be improved. For  the sake of comparison the fully 
developed laminar U profile for the swirl conditions 
described earlier is included in Fig 9. Time-mean velocity 

218 Vol 7, No 3, September 1986 



Determination of principal characteristics of turbulent swirl ing f low along annuli 

1.0 

0.90 

0.80 

0.70 

0.60 

0 
I I 

Station 

1 

8 

10 

0.3 
I 

i 1 .  

X 

[] 0 

V 11.6 

0 1 4 . 9  

Constant viscosi ty  

MLH m o d e l  

k - e  

L a m i n a r  f l o w  

0 . 6  0 . 9  1.2 1.5 1.8 
I I I I I I I I I I 

Experiment 1 

0.51 i , , , , , 

01o  08 01 

S 

/ /  

----'5" 
I 

0 

o,1 

L 
I 

,4 
/~ o / v / o / v 

o // v I 
v 

I I I I I 

Fig 9 Axial velocity profiles for swirl generator blade set at 15 ° and Re = 28 700 using three different turbulence models. 
Fully developed laminar profile for conditions in Fig 6 shown for comparison 

measurements ~'9 have shown that axial velocity profiles 
are only slightly affected by swirl. Furthermore, it was 
concluded 9 that axial diffusivity is unaffected by swirl, 
which suggests that the equations that govern the axial 
velocity (vorticity and stream function equations) could 
be handled separately. In addition, non-isotropic 
turbulence could be introduced and, for the sake of 
simplicity, #e,x was calculated from Eq (12) in which the 
mixing length was defined as 

lx = Cx(ro - r3 (55) 

and the constant Cx=0.14. However, for the swirl 
equation, the expression (54) was still used. An obvious 
improvement in the predictions can be seen as indicated 
by the MLH curves in Fig 9. The tangential velocity 
profiles remained unchanged with this analytical 
procedure. 

The MLH model was also used to estimate the 
tangential eddy viscosity across the annulus using Eq 
(13). The choice of mixing length constants was derived 
from the optimization of experimental data. In the core 
region it was concluded that 

1o = 0.098(ro - ri) (56) 

for best results, but near the walls it was assumed that 
lx= l o and the effective viscosity obtained from Eqs (51) 
and (12). Figs 10(a) and 10(b) show the tangential velocity 
profiles corresponding to this case for the experimental 
conditions of ct=0.51, R e = 2 8 7 0 0  and two swirl 
conditions at inlet. 

Although agreement between theory and 
experimental data is not perfect, the degree of accuracy 
achieved could well match the requirements of many 
engineering applications. 

The k-e model was used to assess predictions for 
large inlet swirl velocities and, in particular, the swirl 
distribution generated by the swirl blades set at 45 ° and 
15 ° for Re = 28 700 and ~ = 0.51. The previously discussed 
boundary conditions at inlet, on the walls and at outlet, 
were used for all the dependent variables with inlet data 
taken from experiments 1. Fig 11 shows the comparison 
between experimental and numerically predicted 
tangential velocity profiles for the 45 ° case for values of X 
between 0 and 11.6, ie about 80 % of the length of the test 
section from inlet. Although the predictions appear to be 
good, it is worth bearing in mind that to achieve this 
accuracy five coefficients are associated with this model. 
The time required to adjust these coefficients to produce 
satisfactory correlation can be excessive, which reduces 
somewhat the utility and attractiveness of such a 
procedure. 

Predictions for the axial velocity profile using the 
k e model are shown in Fig 9. Clearly, agreement is good 
near the outer wall and in the core region but there is 
significant deviation near the inner wall. This disparity 
can be traced to the probability that the universal law of 
the wall, assumed to hold near both solid boundaries, is 
actually only valid near the outer wall, a conclusion also 
reached by Brighton and Jones 22 and Yamamoto and 
Millar 8. 

Bearing in mind the complexity of the problem 
investigated in this paper perfect agreement between the 
results of numerical integration of the Navier-Stokes 
equations and experimental data, over a wide range of 
geometric and fluid property parameters, is unlikely to be 
achieved. However, to demonstrate further the capability 
of the foregoing methods of approach for turbulent swirl 
flows along axisymmetric annuli, two further examples 
are considered: 
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Re = 28 700 

(a) free vortex inlet swirl distribution given by W= R-  
and U = 1.0; 

(b) an experimental swirl distribution corresponding to a 
swirl blade angle of 15 °. 

Both the above flows were investigated for Re= 
28700 and ~=0.51, and the predicted results for the 
tangential velocity profiles are shown, respectively, in 
Figs 12 and 13. The calculations have been carried out to 
an equivalent station 21 corresponding to X=33.1 ,  ie 
more than twice the length of the test section over which 
measurements were made 1'2. These and the previous 
figures demonstrate the success of the analytical 
techniques in predicting the principal characteristics of 
swirling flow along an axisymmetric annulus, namely: 

(a) OW/~R is large and positive near the inner wall; 
(b) W then increases more slowly to a maximum; 
(c) the maximum value of W migrates towards the outer 

wall with increasing distance downstream, and far 
downstream is located near mid-radius; 

(d) OW/OR is large and negative near the outer wall and 
is of smaller magnitude than the gradient near the 
inner wall in the early stages of flow development, but 
the behaviour reverses well downstream; 

(e) in the core region ~W/Or is constant and negative, 
especially evident for modest inlet swirl where the 
condition exists well downstream before the W 
profile becomes a parabolic shape; 

(f) other than in the immediate vicinity of inlet the U 
profile is little affected by swirl; 

(g) radial velocities are always small for the inlet swirl 
distributions examined in this work. 

It may also be noted, by comparing the data in Figs 6 and 
12, that Wdecays far more rapidly in turbulent flow than in 
laminar flow. The preceding points (a) to (e) are clearly 
evident in Fig 6. 
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From these critical areas of agreement between 
theory and experiment it is considered that the present 
analytical approaches represent a generally valid means 
of predicting the behaviour of swirling turbulent flow that 
enters and subsequently decays along an axisymmetric 
annulus. 

C o n c l u s i o n s  

The principal conclusions that may be drawn from the 
foregoing analyses, in relation to previously reported 
experimental data, are as follows. 

(a) Time-mean flow distributions can be predicted from 
finte difference solutions of equations that represent 
the minimum simplification of the steady-state 
Navier-Stokes equations describing turbulent 
swirling flow in an axisymmetric annulus. 

(b) The accuracy of results depends critically on how well 
the boundary conditions used in the computations 

match the real conditions on the annulus walls. 
(c) Numerical stability of such complex computations 

presents difficulties, including divergence, and these 
are exacerbated as interest moves from laminar to 
turbulent flow and from a pipe to an annulus. Under- 
relaxation techniques reduce the problem but as yet 
no general technique for choosing a relaxation factor 
is available. 

(d) The convergence criterion should be chosen with 
care. Too small a value leads to more grid points and 
slower convergence, thus rapidly increasing 
computation time. 

(e) For the Reynolds numbers considered, the precise 
boundary conditions far downstream have little effect 
on behaviour of the flow to at least X = 15, beyond 
which the flow becomes fully developed. 

(f) A comparison with other work shows that, although 
more troublesome to analyse, the elliptic type of 
differential equations solved by finite difference 
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techniques, as herein, yield more accurate results 
than equations obtained in parabolic form. 

(g) The isotropic turbulence (constant po) assumption 
yields poor predictions; but, with careful treatment of 
wall conditions, reasonable predictions can be made 
with constant/re,0 and mixing length estimations for 

(h) The MLH models, with simple mixing length 
distributions, have been established from which time 
mean velocity profiles can be deduced that show 
reasonable agreement with experiments. 

(i) The k-e  turbulence models can be made to fit 
experimental data well, but this requires continual 
input from such data. The appropriate coefficients 
need to be optimized for swirl flows as functions of 
inlet swirl profile, radius ratio, Reynolds number etc 
but this calls for further detailed study. 
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